Mollification formulas and implicit smoothing
نویسندگان
چکیده
This paper develops some mollification formulas involving convolutions between popular radial basis function (RBF) basic functions Φ, and suitable mollifiers. Polyharmonic splines, scaled Bessel kernels (Matern functions) and compactly supported basic functions are considered. A typical result is that in Rd the convolution of | • |β and (•2 + c2)−(β+2d)/2 is the generalized multiquadric (•2 + c2)β/2 up to a multiplicative constant. The constant depends on c > 0, β where <(β) > −d, and d. An application which motivated the development of the formulas is a technique called implicit smoothing. This computationally efficient technique smooths a previously obtained RBF fit by replacing the basic function Φ with a smoother version Ψ during evaluation.
منابع مشابه
Smoothing by mollifiers. Part I: semi-infinite optimization
We show that a compact feasible set of a standard semi-infinite optimization problem can be approximated arbitrarily well by a level set of a single smooth function with certain regularity properties. This function is constructed as the mollification of the lower level optimal value function. Moreover, we use correspondences between KarushKuhn-Tucker points of the original and the smoothed prob...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملCurvature formulas for implicit curves and surfaces
Curvature formulas for implicit curves and surfaces are derived from the classical curvature formulas in Differential Geometry for parametric curves and surfaces. These closed formulas include curvature for implicit planar curves, curvature and torsion for implicit space curves, and mean and Gaussian curvature for implicit surfaces. Some extensions of these curvature formulas to higher dimensio...
متن کاملMollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complex
We construct mollification operators in strongly Lipschitz domains that do not invoke non-trivial extensions, are Lp stable for any real number p ∈ [1,∞], and commute with the differential operators ∇, ∇×, and ∇·. We also construct mollification operators satisfying boundary conditions and use them to characterize the kernel of traces related to the tangential and normal trace of vector fields....
متن کاملMollification Based onWavelets
The mollification obtained by truncating the expansion in wavelets is studied, where the wavelets are so chosen that noise is reduced and the Gibbs phenomenon does not occur. The estimations of the error of approximation of the mollification are given for the case when the fractional derivative of a function is calculated. Noting that the estimations are applicable even when the orthogonality o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 27 شماره
صفحات -
تاریخ انتشار 2007